Local Spectral Diffusion for Robust Community Detection
نویسندگان
چکیده
We address a semi-supervised learning problem of identifying all latent members of a local community from very few labeled seed members in large networks. By a simple and efficient sampling method, we conduct a comparatively small subgraph encompassing most of the latent members such that the follow-up membership identification could focus on an accurate local region instead of the whole network. Then we look for a sparse vector, a relaxed indicator vector representing the subordinative probability of the corresponding nodes, that lies in a local spectral subspace defined by an order-d Krylov subspace. The subspace serves as a local proxy for the invariant subspace spanned by leading eigenvectors of the Laplacian matrices. Based on Rayleigh quotients, we relate the local membership identification task as a local RatioCut or local normalized cut optimization problem, and provide some theoretical justifications. We thoroughly explore different probability diffusion methods for the subspace definition and evaluate our method on four groups with a total of 28 representative LFR benchmark datasets, and eight publicly available real-world networks with labeled ground truth communities across multiple domains. Experimental results exhibit the effectiveness and robustness of the proposed algorithm, and the local spectral communities perform better than those from the celebrated Heat Kernel diffusion [10] and the PageRank diffusion [1].
منابع مشابه
Nonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملKrylov Subspace Approximation for Local Community Detection
Community detection is an important information mining task in many fields including computer science, social sciences, biology and physics. For increasingly common large network data sets, global community detection is prohibitively expensive, and attention has shifted to methods that mine local communities, i.e. methods that identify all latent members of a particular community from a few lab...
متن کاملFast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملScalable and Robust Local Community Detection via Adaptive Subgraph Extraction and Diffusions
Local community detection, the problem of identifying a set of relevant nodes nearby a small set of input seed nodes, is an important graph primitive with a wealth of applications and research activity. Recent approaches include using local spectral information, graph diffusions, and random walks to determine a community from input seeds. As networks grow to billions of nodes and exhibit divers...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل